题目
For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
Example 1:
Given n = 4, edges = [[1, 0], [1, 2], [1, 3]]
0
|
1
/ \
2 3
return [1]
Example 2:
Given n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2
\ | /
3
|
4
|
5
return [3, 4]
Note:
(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.
给定一个无向图(树结构),找出树的最小高度的根节点
高度指的是根节点到叶节点的最长边数
思路
这题拿到的第一感觉用 BFS 找到每个节点作为根节点的高度,然后取出里面最小高度对应的节点即可,但是这样做的时间复杂度太高不能被 AC。参考了讨论区大神 dietpepsi 提供的方法后才得到一个比较优的方法,该方法其实就是剥洋葱,每次剥掉叶节点,直到最后剩下的一个或者两个节点就为最小数的根节点。
- 找到树的叶节点,将其放入一个 leaves 里面
- 依次将这些叶节点剥掉,即删除与之关联的边
- 如果薄掉后与之关联的节点也变成的叶节点,则将其放入一个名为 newLeaves 中
- 将 leaves 里面节点剥完之后 leaves = newLeaves,重复上述操作,直到最后剩下的节点数为 1 个或者 2 个,即为所求
实现
public List<Integer> findMinHeightTrees(int n, int[][] edges) {
if (n == 1) return Collections.singletonList(0);
List<List<Integer>> list = new ArrayList<>(n);
for(int i=0;i<n;i++){
list.add(new LinkedList<>());
}
for(int i=0;i<edges.length;i++){
list.get(edges[i][0]).add(edges[i][1]);
list.get(edges[i][1]).add(edges[i][0]);
}
List<Integer> leaves = new LinkedList<>();
for(int i=0;i<list.size();i++){
if(list.get(i).size() == 1){
leaves.add(i);
}
}
while(n>2){
//剥掉后更新 n 的值
n -= leaves.size();
List<Integer> newLeaves = new LinkedList<>();
for(Integer node:leaves){
//将与之关联的 con 节点的关系中删除该节点
//该节点的关系中没必要删 con,因为该节点已经被剥掉了,不会重复遍历了
int con = list.get(node).get(0);
list.get(con).remove(Integer.valueOf(node));
if(list.get(con).size() == 1){
newLeaves.add(con);
}
}
leaves = newLeaves;
}
return leaves;
}